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In the conventional plasma simulation models using particles, in which the total momentum 
is conserved, the total energy is not conserved due to nonuniformity of space caused by the 
spatial grids. The grid spacing has been severely limited of order of the Debye length. It is 
found that the use of the high-order spline spatial interpolation removes this limit without a 
significant increase of the computation and complexity of the algorithm in the system that 
only the long-wavelength, collective phenomena are important. The theoretical analysis of the 
total energy is improved compared with the previous work and its scaling law is related to the 
so-called abasing error explicitly. The coefficient n introduced previously is referred as the 
model index and is used again as a measure of the accuracy of the models for the energy con- 
servation ‘f” 1986 Academic Prrra. lnc 

I. INTRODUCTION 

In the conventional plasma simulation using particles, the use of a grid associated 
with the spatial interpolation is inevitable for the practical runs using the present 
digital computer, because the number of the particles used is so large. Some simple 
models such as Nearest Grid Point (NGP) [l], Cloud-in-Cell or Particle-in-Cell 
(CICPIC) [2,3,4] and dipole expansion and Subtracted Dipole (SUD) [S] have 
been commonly used. 

It is well known that the applicability of the particle simulation using these sim- 
ple spatial interpolations has been limited severely when the Debye length is shorter 
compared with the grid size [13], while there have been several attempts to reduce 
the restrictions [6, 73, more efforts may be necessary for the wider application to 
various problems of physics and technology. Here, we review the origin of the 
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restrictions on the grid size using a one-dimensional electromagnetic code including 
the full dynamics of the particle motions. 

We denote the plasma angular frequency as op, a time step as dt, a grid spacing 
as d, a Debye length as I,, and the light speed as c. In conventional plasma 
simulations, three conditions must be met: 

(i) AGA,,, 
(ii) wp At d 1, 

(iii) At < A/c. 

The relaxation of the first restriction (i) promises us a significant improvement of 
the particle simulation for realistic environment: We have many unresolved 
problems, in which the collective modes with their wavelength much larger than he 
Debye length iD are dominant and the fluctuations with the short wavelength are 
small enough to be treated as the collisional effects. We have much computational 
gain, if we succeed in getting high mgain = A/d, in the case of the three-dimensional 
problems. Therefore, some efforts have been done by the many authors. These are 
reviewed simply in Ref. [6, 71. 

Furthermore, it is easily pointed out that the relaxation of the first restriction (i) 
may help relax the restriction (iii). The time step At may be chosen to be the 
smaller one between l/w, and (mgalnute/c)/~,,, where ut, is a thermal speed of the 
electrons. In the case of a low temperature plasma (u,,/c< 1 ), the computational 
gain on the factor mgain to At is clear in addition to the gain to the grid spacing A. 

Here, we summarize a brief history of the improvement after appearance of 
CICPIC. Abe, Miyamoto, and Itatani [4] have for the first time succeeded in con- 
firming superiority of the higher order spatial interpolation using the quadratic 
spline and the Fast Fourier Transform (FFT) in the case of A > I, and observed a 
decrease of the total energy error compared with the linear interpolation, when the 
quadratic spliiie is used. 

Then, Okuda et al. [6,7] challenged to treat the cases of i,/A = 0.1-0.01 and 
succeeded in finding its way. They have tested the quadratic spline, cubic spline, 
and the Gaussian interpolations. Nakajima, Abe, and Itatani [S] applied the 
quadratic spline to a two-and-one-half, electrostatic dimensional simulation on the 
wave propagation and plasma heating and have succeeded in treating the large 
space as an application. 

One of purposes of this work is aimed at resolving a problem of treatment of 
,i,/A-0.001. We conclude that the use of the higher order splines is one of the 
most appropriate methods to reduce the restrictions on the grid size compared with 
the Debye length for the present digital computer including the so-called super 
computer such as CRAY in US or VP, S, and SX in Japan. We give an example 
where the 5th order spline functions have been tested. 

As a measure of the reliability of the particle simulation, the total energy error 
has been usually monitored. At first, its semi-empirical laws on the simulation 
parameters were obtained by Hackney [9, lo] and Lewis et al. [ 11, 121. By 
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introducing rough but useful assumptions, Abe et al. [43 succeeded in theoretical 
analysis, with a scaling law on the temporal fluctuations of the total energy by 
representing the standard deviation of the total energy error. They introduced the 
proportional coefficient q inherent to the spatial interpolation scheme. If we find a 
spatial interpolation with smaller q, this interpolation may be judged as a better 
from a viewpoint of the accuracy on the conservation of the total energy. In this 
sense, we now rename q as a model index. 

Usually, a self-heating time TV introduced by Hackney [9] is used as a measure 
of accuracy of the total energy error. The meaning of the self-heating time is easily 
understood. However, it is inconvenient for the cases of the system with little energy 
error in order to measure directly, because much computer time is thought to be 
needed. On the other hand, the model index is easily measured as shown in this 
work, even though the final energy error is very small. The relation of the heating 
time, rh, and the model index q is introduced as r,~l/$ in Ref. [lS]. 

These total energy errors have been shown to be originated by the aliasing error 
by Langdon [ 131, however, Abe et al. did not clarify the relation between their 
scaling law and the aliasing error, because their analytical way was difficult to 
represent the aliasing error explicitly. It is shown in this work that the relation 
between the scaling law and the aliasing error can be clarified by the modification 
of the previous work [4]. 

II. THEORETICAL ANALYSIS OF THE GRID FORCES 

For simplicity, we examine the most basic case: a periodic one-dimensional elec- 
trostatic system, which is assumed to be composed of two species of N ions and N 
electrons and to be charge neutral. The mass and charge densities of the jth particle 
are nrj and e,, respectively. In the gridless simulation system, the force Fj acting on 
the jth particle may be expressed generally’ by the convolution integral of the 
weighting function W(x) and the electric field E(x) as 

L 

F, = ej 
s W(x -xi) E(x) dx, (1) 
0 

where L is a period of the system. The physical and the mathematical meaning and 
figures of the weighting function W(x) will be related to the methods of the spatial 
interpolations and will be explained later. The equation to the electric field may be 
given by 

E(x)= -s, 

ej W(x - xi). 
(2) 

’ When the delta function 6(x) is substituted as W(x), the force is reduced to the usual representation: 
Fj = e,E(x,). 
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From the periodic boundary condition, the weighting function W(x) is Fourier- 
expanded as 

Applying Eq. (3) to Eq. (1 ), we get 

(4) 

Now, we introduce the spatial grids on which the physical quantities are 
numerically calculated and used as the basic quantities of the spatial interpolations 
for the purpose of saving computer time. We define the weighting function W, in a 
gridded system as 

wg(x, Xi)= C W(lA -Xj) 6(X-IA), 
I=0 

where M, is the number of the grids in the system and the grid spacing A is L/M,. 
This equation may be useful for coding the actual simulation program using the 
spatial interpolation proposed in this paper. 

As a result of the spatial interpolations using the grid quantities, the weighting 
function W,, unlike W, in the gridded system cannot be expressed by a function of 
the differences between the observation point x and the particle point x,. This 
causes the Fourier coefficient W,, to be a function of xi, W,, = W,,(x,). Therefore, 
we may Fourier-expand W, as 

WJX, Xi) =; 2 W,,(Xj) eik,(x- Xl), 

m= --M, 
(6) 

where M, < M, 12. 
This means that the spatial uniformity is lost in the gridded system. In the 

gridless system or the real space, the spatial uniformity may hold and give a 
necessary condition for the energy conservation. 

The Fourier coefficient W,,(x,) can be actually calculated as 

w,ym(xj) = wm + Em(xj)t 

E,(xj) = f Wm+nM,eCi2nn(r//d), 
n= -a, 

f7fO 

(7) 

(8) 

where Eq. (8) is derived in Appendix B. 
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By comparing Eqs. (6) (7), and (8) with Eq. (3), we may give the gridless 
weighting function B’(x) the physical and mathematical meaning in this paper. In 
other words, the Fourier coefficient W,,, of W(x) for m GM,. is the averaged value 
of W&xi) on x,, when xi is assumed to be at random distributed. The difference 
between Wg,(xj) and W,,,, E,(x,), is sometimes called the aliasing error [ 131. 

Rewriting Eq. (6) by using Eqs. (7) and (8), we can separate the weighting 
function W,(x, xj) in the gridded system into two parts: W,(x - x,) with the spatial 
uniformity and the rest, in a sense error, E(x, x,) as 

wg(x, xj) = wO(x-Xj) + E(x5 xj)3 (9) 

E(x, xi) = f W,,(x - x,) e i2nn8j, 
n= -a 

e,=xjlA- [X,/AI, 

(11) 

(12) 

(13) 

where the bracket [ ] in Eq. (12) denotes the Gauss notation. The function 
W,(X - Xj) is a function which is generated by inverse Fourier expansion of a set of 
the infinite Fourier coefficient: W,,, for m < M, and 0 for m > M,. 

For the computational convenience, we usually choose W(x), such as it is 
spatially localized or it vanishes outside of the region with the finite length. On the 
other hand, W,,(x) is not localized generally. 

The function E(x, xi) is a representation of the aliasing error in real space and is 
an infinite series whose components are products of the function W,(x - x,) with 
the spatial uniformity and a phase factor representing the differences between the 
grid point and the particle position. 

Using Eq. (7) we can get the force acting on the jth particle in the system: 

F,. =s .F ei T $ [G,,,(xi, xi) sin k,(x, - xi) 
0 :=l m=l m  

+ Gc,m(xi, Xl) COS km(xj-x,)I, 

G.y,m(Xi, Xj) = [Wm + ELI [Wm + Et(Xj)I + Ek(Xj) EL(Xi), 

Gc,m(Xi, Xj) =~k(Xj)[ Wm + Et(Xi)I -~k(Xi)CWrn +~fz(Xj)Iv 
E: = Re(E,,,), EL = Im(E,,,). 

(14) 

(15) 

(16) 

(17) 

As was done in Ref. [4], we assume the grid forces defined as the difference 
between the force acting on the particle with the spatially uniform weight 
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W,(x - x,) and the force acting on the particle with the gridded weight W,(x, x,). 
Then, we find 

‘Fj=z T ei 
0 r=l 

2 $ [F&xi, xi) sin k,(x,-xi) 
m=l m 

+ Gr.rn(x;T Xj) COS km(X, - x,)] ) (18) 

where 

Fs,,(x,, xi) = G.s,,(x,> xi) - w”,. (19) 

Next, we used the same assumptions as in Ref. [4]. We may summarize them 
without losing their essence and replace them by a simplified assumption that the 
positions of the particles are distributed randomly at each time step of the 
simulation. Then we get the squared value of the standard deviation of the grid for- 
ces in the system, (SF2). 

(SF2)=(~)2~~,(~)2{~~,(w:,,,~+w: no,) 

+; f vvn+nM,+ WLM,) 1 . (20) n=l 
This equation is derived in Appendix C and is confirmed numerically by using 

the Monte Carlo integration scheme where the particle positions xi and x, are taken 
as uniform random numbers. 

In the simulation model using the FFT method, we may adopt the Gaussian 
filter2 which reduces the magnitudes of the higher modes in k-space. By the 
introduction of the characteristic radius R, Eq. (20) is slightly modified as 

G, = exp (22) 

2 In the code, the filtering is done in k-space twice per time step, i.e., at measuring the held quantities 
and before return to the quantities in real space for calculating the pushing force of each particle. The 
reader must know that one of reviewers points out that better spatial filter exists than the Gaussian filter. 
Because any references are not shown, the authors are not sure on this problem but at the moment 
believe that use of the Gaussian filter is the safest for the subtle simulation parameters from the authors’ 
experiences. 
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Now, we can estimate the magnitude of the total energy fluctuation due to the 
grid force. The kinetic energy variation in the system due to the grid force is 
approximated as [4] 

%= F vj6Fj. 
J=I 

(23) 

If 6Fj and the particle velocity v, do not have any correlations, the standard 
deviation of the temporal derivative of the kinetic energy in the system is evalutated 
as 

where C(X) denotes a standard deviation of an ensemble X. 
Relating this equation with Eq. (21), we can get 

where 

(24) 

(26) 

(27) 

Here, the coefficient, i.e., the model index, q is the same as that defined in 
Ref. [4], but is more general and is represented by the Fourier coefficient of the 
aliasing error (In Ref. [4], the aliasing error is treated implicitly using the quan- 
tities in real space). In the case of M, = M,/2,3 the model index q only depends on 
the model and the cloud radius R. 

When M, is increased to be infinite, q tends to a definite value. If M, is suf- 
ficiently large (M,B lo), ‘1 is considered to be almost independent of M,. In other 
words, 9 is thought to be determined by the interpolation scheme used in the 
simulation model, as introduced in Section I. 

’ Throughout this paper, we set as M, = ,bf,/2 
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III. THE PROPERTIES OF THE SPLINE FUNCTIONS 

We define the (n - l)th-order spline function W’“‘(x) as a function which is 
obtained by folding the rectangle function with square form (n - 1) times by the 
convolution integral in real space.4 

Then, their Fourier components in k-space are 

where k, = 2nm/L. 
Their forms in real space are shown up to n = 6 in Fig. 1. As seen easily, n = 1 

corresponds to NGP [l], n = 2 to CIC-PIC [2,3], and n = 3 to the quadratic 
spline or the modified method 2/2 [4,6,7,8]. 

These (n - l)th-order spline function has the following features: 

(a) The higher components in k-space are small. 

(b) The 0th mode in k-space does not include the aliasing error and its 
magnitude is unity, i.e., 

W m+nlu,= 1 for m=Oandn=O, 

=o for m=Oandn#O. (29) 

0 2 

X/A 

FIG. 1. Form of the spline functions: W”‘(x) for n = 1 to 6 

4 The (n - l)th-order spline requires n points for charge and current sharing and spatial interpolation 
of the field quantities. Therefore, we can call the n-point spline for the (n - l)th-order spline [ 151. 
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This is equivalent to the condition for the charge conservation in the spatial inter- 
polation at any points [13]. 

(c) In the finite region of real space, their values are finite, i.e., 

W(x) # 0 for -nA/2 -c x < +nA/2, 

W(x)=0 for x < -nA/2 and x B +nA/2. (30) 

(d) They are piece-wise polynomials of order n - 1 in real space and their 
derivatives are continuous to the (n - 2)th order. Their actual representations are 
presented in Appendix A. 

(e) The higher order spline function approaches the Gaussian function with 
the mean value of zero and its standard deviation (T = A(n/l2)“*. As a result of the 
spatial smoothing due to use of the higher order spline, this spatial interpolation 
deteriorates the spatial resolution to the degree which is shown in an examp1e.j 

Here, we assess the aliasing error by defining the following value: 

a*{Eg'} = j [Ej,"'(x,)]' p(x,) dx,, (31) 

where p(xi) is the probability density and is assumed to be uniform in the system. 
The numerical results are presented in Fig. 2 in the cases of R = 0.0 and R = A. 

We can see that the aliasing error becomes smaller almost by one order of 
magnitude, when n is increased by one. Especially, the decreases to the lower modes 
in k-space are very important, because these modes are physically important and 
should be retained in the computation. 

IV. COMPARISON BETWEEN THE MODEL INDEX q AND THE MEASURED VALUES 

Along the scheme explained in Section II, the simulation has been carried out 
and the value of q is measured up to n = 6. The electrons and ions are uniformly set 
initially. Their velocities form a maxwellian distribution, and their mean value and 
the thermal speed are adjusted to be exact within each region which is a piece 
divided to 20 from one period L of the system. 

The particles are pushed by the standard leapfrog scheme. The model index n is 
approximately measured through the calculation of the total energy error. This 
method is the same as used in Ref. [4] except for the minor improvement explained 
in the following: 

(32) 

5 For example, g is about 0.76 in the case of n = 6. When we use the Gaussian filter with radius 
R = d, the effective radius of the cloud may be approximated to be (R2 + d)1s2 = 1.224. 
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(a) (b) 
0.2 

0 kc 0 KC 

k k 

FIG. 2. The magnitudes of the aliasing error for n = 1 to 6. The ordinate ~J{E~)}/W~ shows the 
values obtained by dividing by the square root of Eq. (31) by W, defined by Eq. (10): (a) for R = 0.0, (b) 
for R = d, in this case, the graph for n = 6 is too small to be shown in this scale and is omitted. 

where 

AHi= H,- H,. 

Then, we get the empirical q from 

(33) 

YI 
(xM,)“’ N(mil~)<$> + hl~)(vS> 

exp = 0;L (<vf> + (VW2 
~ 

exp . (34) 

In Fig. 3, both the analytical values of the model index v and their measured 
values are shown as a function of the radius R of the Gaussian filter. The simulation 
parameters are 2,/A = 1.0, w, At = 0.04, N = 400, and mi/me = 100. The time step is 
small enough as to avoid the measurement error of B,,~ due to the temporal 
integral. In the usual simulation aimed at the physical study, the longer time step 
may be recommended from the economical point of view. In any case of n, the 
measured values are seen to be slightly larger than the analytical values, but their 
qualitative agreement is said to be quite well in spite of the subtlety of the problem. 
In Table I, the analytical values of q are presented for R = 0.0 and R = A. 

Next, we have measured the model index q as a function of 2,/A between 0.5 and 
0.001. 
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X 

,g 0 I“.‘\ X 

L 

X 

4 \” \ n=2(th.l 

0 0.5 p,*l.o 1.5 

FIG. 3. The analytical model index q(“) us R and the measured values for n = 2 to 6. These values are 
calculated from Eq. (27). 

TABLE I 

The Theoretical Values of the Model Index q far 
n = 1 to 6 with the Radii R of 0.0 and A 

n R=O R=A 

1 1.169 5.343 x 10 - ’ 
2 2.437 x 10 - ’ 4.003 x 10-2 
3 7.818 x IO-2 5.409 x 10-j 
4 2.786 x lo-* 9.912 x lop4 
5 1.032x 10m2 2.170 x 10 -a 
6 3.900x 10-j 5.321 x 10. 5 
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The simulation parameters are N = 400 and = 3200, m,/m, = 100, and wP T = 100 
and 1000, where T is the duration of the simulation run. The time step w,dt is 0.2 
except for the case of l,/A = 0.5 with a time step w,At = 0.02. The minimum total 
energy error AH/H among runs is so small to be order of 10M6, in a few cases, this 
small time step is necessary to avoid the situation that the error due to the time 
integration is larger than that due to the spatial interpolation [4]. 

The results of the measured v us ,4,/A are shown for R = 0.0 and R = A in Figs. 4a 
and b, respectively, where the horizontal arrows indicate the analytical values. For 
discussion, we divide them into two parts: the cases of i,/A > 0.07 and in/A 60.07. 
For the former case of AD/A 3 0.07, it can be summarized that the measured values 
are close to the analytical values. Here, we supplement the following results on the 
reliability of our theoretical analysis: From the conclusion given in Section II and 
Ref. 4, the measured q(“) should very weakly depend on the grid number M, and 
the particle number N, if it is correct. Accordingly, the empirical value qexp, which 
is calculated from N, M,, other simulation parameters, and oexp depending on N 
and M, (see Eq. (34)) depends only on the model. This theoretical prediction has 
been already confirmed in Ref. [4] in detail for the case of 1” 2 A. Again we simply 

(a) R=O.O 

x Y) A 

I +f4 
X 

0 
I ; 4 

102- 
, 

+ I A 
X 

0 
I 

h 476 
* (;) 

O 0 

(a) R=O.O 

V 

. 
V 

16" I 
I I 

10-l 1o-2 10-l 1 

AD /A 

FIG. 4. The measured model index v(“) us L,/A for n = 2 to 6. These values are calculated from 
Eq. (34). The horizontal arrows in the right side indicate the analytical values. These values arc 
measured at w,T= 100 except for those enclosed in the round bracket at o,T= 1000. The vertical 
arrows indicate the temporal change of the values between these two time: (a) for R = 0.0, (b) for R = A. 
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FIG. 4-Continued. 

confirmed the weak dependence of ylexP on N and M,, where the parameters tested 
were M, = 64, 128, and 256, and N= 1600 within the range of the former case 
(2,/A > 0.07). 

Then, we discuss on deviation from the theoretical prediction and the smaller 
measured r,i compared with the analytical values for the latter case, i.e., ,?,/A < 0.07, 
as seen clearly in Fig. 4. Anyway, these results may be convenient for the practical 
uses. We believe the reason lies in the following point: The initial positions of the 
electrons and ions are the same and are distributed with equal spacing. When ,X,/A 
is small, the regularity of the initial particle distribution persists for a long time. In 
this case, the assumption required to get Eq. (20) (the position of the particles are 
distributed randomly at each time step) does not hold. This causes deviation from 
the theoretical prediction. The grid forces may be cancelled out due to its persisting 
regularity. Therefore, we observe the smaller q. 

Here, we pay attention to the effects of the finite cloud radius, R, for the latter 
case (AD/A =O.l -0.01). In the case of n = 2 with R=O shown in Fig. 4a, the 
measured rl become larger than the analytical values in the comparably early time, 
wP T= 100. In this case, the total energy error AH/H is very large to surpass 100% 
due to the numerical instability [13]. In Fig. 4, the signs enclosed in the round 
brackets are the values which are measured at o,T= 1000 (ten times longer than 
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the usual measurement time: w, T= 100). Except for the case of rz = 6, i.e., for the 
cases of n = 3, 4, and 5, with R = 0.0, they also surpass beyond the analytical values 
between oP T = 100 and 1000. In these cases, the numerical instability [ 131 grows 
after the critical time, the total energy error AH/H surpasses 100% and the 
measured r] becomes larger corresponding to the occurrence of the numerical 
instability. From these results, we can conclude that the assumptions in analysis of 
q are broken. 

On the other hand, this instability seemed to be stabilized when we used the finite 

( % 1 
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FIG. 5. Total energy error AH/Ho = (H - H,)/H, OS o,, T for n = 2 to 6. The ordinate is shown with 
percent. (a) for 1,/d = 0.01, (b) for 1,/A = 0.001. 
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TABLE II 

The Final Energy Errors (%) for n = 1 to 6” 

ho/A 1 2 3 4 5 6 

0.1 3.213 x 1O+3 3.689 x 10 + ’ 8.494 x 10 -~ 1 -2.772X 10-Z 6.244 x lo-’ 2.142 x lOmA 
0.01 1.770 x 1o+5 2.255 x 10 +* 8.131 1.674 1.665x 10 ’ 1.466x 10 ’ 

0.001 1.882 x lo+’ 4.568 x 10 + ’ 8.897 3.149 1.139 3.685 x 10 ’ 

Note. o,t=500, N,=400, M,=32, R=A. 
a Their temporal changes for n = 2 to 6 are shown for lo/A = 0.01 and 0.001 in Figs. 5a and b, respec- 

tively. 

cloud radius (R = A) for the cases of n > 3 with a parameter of 2,/A = 0.01. This is 
consistent with the results presented in Fig. 4b, where we find even the cases that 
the measured q are decreased from oP T= 100 to 1000. 

We tried to perform the same test for the cases with 1,/A = 0.001 and R = A, 
however, we could not obtain the meaning differences of the results between 
w,T= 100 and 1000. 

These all results can be summarized as follows; the runs with the parameters of 
2.,/A = 0.01-0.001 are stable for a very long time when we use the spline inter- 
polation of n = 5 or n = 6 with the cloud of the finite size, i.e., R = A. It is noted that 
q is rather decreased from w, t = 100 to 1000, when we use these splines in the case 
of 2.,/A = 0.01, as seen in Fig. 4b, and therefore we may expect that these splines 
can keep the same small q in the long time of order of or longer than oP t = 10000. 

Finally, we choose the typical examples which indicate clearly the results of the 
improvement done in this work, and show the temporal change of the total errors 
for the cases of 2,/A = 0.01 and 0.001 in Fig. 5. The other simulation parameters 
are w,At = 0.2, N = 400, m,/m, = 100, M, = 32, and R = A. In Table II, we present 
the final total energy error. 

V. DISCUSSION AND CONCLUSION 

A series of the spatial interpolation schemes using the higher order splines are 
proposed and the total energy errors due to their aliasing are theoretically analyzed. 
We used the model index q as a measure of the accuracy of the model. The model 
index q was theoretically predicted and compared with the measured values. For a 
set of parameters (A Z 0.07 A,), the theoretical predictions agree well with the 
measured values, if the numerical instability does not grow. In the case of 
AQ0.07 A,, the measured q is smaller than the theoretical value.6 

6 One of reviewers shows an interesting interpretation on this result. Here, we introduce this. Because 
the number of modes is fixed, the minimum phase velocity supported by the system increases relative to 
the thermal velocity, as l,/A decreases. Since ~~~ = (3 + 1//~*2~)‘/* u,,,, and the maximum value of kA = x, 
it follows that the minimum phase velocity is [3 + A2/(dD)2]1/2 u,~. Thus if ?.,/A < 0.09, then the 
minimum phase velocity is larger than 4 D!,,, and there are no plasma waves in the system which can 
interact with any electrons. Perhaps this explains the behaviors under and over 2,/A = 0.07. 

58 l/63:2-2 
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This result is somewhat puzzling at first, however, we believe that the reason lies 
in violation of the assumption to get Eq. (20) associated with persisting spatial 
regularity set by the initial condition of our simulation: Almost all the particles 
oscillate only a fraction of grid space around their positions of free streaming and 
therefore, the noises, both physical and nonphysical, have not been excited to their 
thermal level. If the simulation is run much longer than our measurement time 
(wP T= 1000) we have a possibility that the meausered v] becomes larger very 
slowly, even when we use the higher order spline interpolations of n 3 5. However, 
we again ask the reader to pay attention to the note mentioned in the part close to 
the end of Section IV and add the following fact: we have studied the time-averaged 
k-spectrum in the thermal plasma using the two dimensional code. We have found a 
case that the measurement values of the many modes for electrostatic electric held 
energy reach those calculated using the thermal equilibrium theory at the com- 
parably early time, oP t = 360, even in the case of 1*,/d = 0.01, although they scatter 
broadly with one order of magnitude (This means that other many modes are 
under the thermal equilibrium level) and the energy conservation is good in the 
long time. This study is incomplete and so more work is needed to get the final con- 
clusions of what state the simulation system using the scheme proposed here 
approaches finally. 

In many cases, the time interval in which the numerical noise is sub-thermally 
excited may persist, as discussed in Section IV. Some readers may be afraid that the 
physical results may be modified, when ,?.,/A < 0.07. Actually, the properties of the 
total energy error are changed. However, this does not necessarily mean that whole 
the physics changes. In some cases, the low level of noise may be advantageous for 
a study of various problems of the plasma physics. Such an example was shown in 
Refs. [S, 141, where the collective wave propagation has been confirmed to be 
simulated exactly in the case of 2,/A ~0.01. 

Following the examples given in Ref. [6], we tested the cases for a very slow 
drifting beam. When the splines of n = 5 and n = 6 were used, all the runs were com- 
pletely stable and the total energy error were completely negligible for any cases. As 
a result even the physical two beam instability could not grow to a detectable 
amplitude within our run time due to the smallness of the initial numerical noise. 

In this work, we sometimes used very small time steps in order to measure the 
total energy error caused only by the spatial grids. From the stability criteria of the 
leapfrog time integral scheme for the cold plasma, o,At should be equal or less 
than 2.0. Actually, the time step of o,At = 2.0 did not cause the numerical 
instability for the maxwellian plasma with /z,/A =O.Ol and 0.001.’ 

We therefore believe a use of a time step close to o,At = 1.0 is not too large in 
the simulation system when the Debye length is much smaller than the grid size. 

’ Two reviewers pointed out that this fact is unusual. One of them writes that for a thermal plasma, 
the limit is not 2.0 but 1.63. However, the exact limit is 2.05 in the case of ,?,/A =O.Ol. The energy error 
at o,,t = 1000 is 0.15 %, when the Sth-order spline (n = 6) is used with a parameter of w,Af = 2.0. This 
may be a new discovery. However, it is unstable with parameters of E.,/A = 1.0, 0.25 and co,At = 2.0. 
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The essence of merit for use of the high-order spline is considered to lie in a 
point: For example, use of the linear spline plus k-space smoothing may not be sub- 
stituted, as long as the long wave length phenomena are retained in the system. 
Careful chosen k-space smoothing can reduce the energy error due to the short 
wave length fluctuations, but the error due to long wavelength fluctuations cannot 
be reduced, if we use the linear spline. 

We should point out that a use of large grid with high-order interpolations 
reduces the thermal noise and collisions. This happens because the field energy 
decreases compared with the thermal equilibrium level. This means save of the 
number of the particles used in the simulation and the substantial save of the 
simulation cost. 

In the strongly magnetized plasma, the phenomena associated with the long wave 
length (,!. > lOOA,) are important. The use of the Sth-order spline along the 
magnetic field and the 2nd-order splines across the field are tested. In this case, the 
grid points required for the calculation is 3 x 3 x 6 = 54 for the field interpolations, 
while it is 2 x 2 x 2 = 8 in CIC-PIC. When we use the former interpolation, we can 
handle space lo4 times larger or the more than that in CIC-PIC. Therefore, the 
computational gain is very clear. 

Finally, we mention about the cost of use of these weigthings. The discussions for 
the cost should be separated in two cases: (i) for the present computers such as 
CRAY, FACOM-VP, HITACHI S-810, and NEC SX, and (ii) for the future com- 
puters. 

We start from the case (ii). The grid points used for sharing charge or current for 
a particle are not overlapped, therefore, we may make the computer doing the 
weigthing of many points for a particle at once. If these computers are realized, we 
do not need much extra computer time. At the present time (i), we can roughly say 
that the computer time needed is proportional to the required points for a particle, 
when VP is used. However, the huge memories and substantial computer time can 
be saved even in the case of the present computer. 

APPENDIX A 

We present the forms of the piece-weise polynomials in the spline functions from 
the zeroth NGP (n = 1) to the Sth-order (n = 6). These functions are symmetry on 
the center of the origin and are given only for x 3 0. 

(The 0th order (n = 1) ) 

(The 1st order (n=2)) 

1 A-x 
w’*‘(x) =-j 7 for Odx<A. 
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(The 2nd order (n = 3)) 

Wc3)(x)=-$( -x2+iA2) for O<u<i, 

=-&(2x-3A)’ for :<x<~A. 

(The 3rd order (n = 4)) 

1 1 
W’4’(x)=-- (4A3 -6Ax2 + 3x3) 

A4 6 
for Obx<d, 

=--$; (24 -x)3 for A <x624. 

(The 4th order (n = 5)) 

for W”‘(x)=;& 115- 120;+48; 
( > 

55+20;-I20$+80$16$ 
! 

for 

for 

(The 5th order (n = 6)) 

APPENDIX B: DERIVATION OF EQ. (8) 

Normalizing Eq. (3), we get its normalized form as 

W,( x - xi) = + f W, e rk+erkm ‘. 

rln= x 

A 3 
6x6-A. 

z 2 

for ObxbA. 

for A<x<2A. 

for 2AGx63A. 

(B1 

From this equation, we can understand that the Fourier coefficient of W,(x - x,) 
is W, e ik+, where the particle locates at x=xi. 
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Following Eq. (5), W,(x -xi) is made sampling on each grid point. Then, its 
Fourier coefficient is given by the discrete Fourier transform. 

M,-I 

W,,(x,) e -ik+i = c W(lA - x.~) e-ikm’A, (B2) 
/=O 

where it is noted that Wg,(xj) is a function of x,. 
The R.H.S. equation of Eq. (B2) is calculated as 

R.H.S. = 7 & 

[ 

f wm,e%nOA --x,) e ~ ikmld 

m’= -a 1 
=&; [z w,, eili.,-k.ilAe-ik~,.~,] Xl m' 

1 =- 
M.r [ 

5 7 wm,ei(k,,~k,)IAe-ik,,xi 

m’#m+nM, ’ 

+Mx f  Wm+,,M,exP(-ik,,,M,xi) 
n= -* 1 

rlk, -~ k,)M,A 

Wl?i 

l-e ~ ik,, u, 
1 _ er&- kmkf 

e 

W m+,,n.l,e 
~ knr,e -.- i(2niA )n r, 

= W,, + f w, + nM, e ~ i(h’A brie - b-y, e ~ ik,.r,, (B3) 
,I= -00 

11 #O 

ik, r, e -r(ZnM,/L)nr, 1 

As a result, we get Eq. (8). 

APPENDIX C: DERIVATION OF Ed. 

The total grid force 6F for the all particles in the system can be expressed by sum 
of the force AFj acting on the particle j which is given by sum of the force AF,, 
between the particles j and i. Therefore, we get 

6F= 5 A4= ‘c” F AF,i. (Cl) 
i= 1 /=I i=l 
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Considering AFj and AFji as random variables, we can use the theorem of the 
central limit. As a result, we can relate each standard deviation as 

(SF2) =2N(AE;:) = (2N)‘(Ac.). cc21 

The grid force AF,, can be obtained from Eq. (18), 

AFii=2 i,, & [F,,( , X,, X,j) sin k,(Xj-Xi) + G,;,(X,, Xj) COS k,(Xj-Xl)] 
m I 

cc31 

Then, we can calculate (AFji) as 

(C4) 

where we have used (sin *k,(xj - xi)) = (cos 2k,(~, - xi)) = 0.5. Using the follow- 
ing relations, 

(Et(Xi) Ek(Xi) > = (&fz(Xi) Efi(X,) > = (EL(X,) E!n(Xf) > ~0, 

(E:(X,)) = (E;k)> =o, 
cc51 

we get Eq. (20). 
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